This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. The 74AVCH4T245PWTG4 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. This allows for universal low voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.
The 74AVCH4T245PWTG4 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE should be tied to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Feature
- Control Inputs VIH/VIL Levels are Referenced to VCCA Voltage
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power- Supply Range
- I/Os Are 4.6V Tolerant
- Ioff Supports Partial Power-Down-Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External pull-up/pull-down Resistors
- Max Data Rates
- 380 Mbps (1.8 V to 3.3 V Translation)
- 200 Mbps (<1.8 V to 3.3 V Translation)
- 200 Mbps (Translate to 2.5 V or 1.8 V)
- 150 Mbps (Translate to 1.5 V)
- 100 Mbps (Translate to 1.2 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 8000 V Human Body Model (A114-A)
- 200 V Machine Model (A115-A)
- 1000 V Charged-Device Model (C101)
This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. The SN74AVCH4T245 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. This allows for universal low voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.
The SN74AVCH4T245 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE should be tied to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.