久芯网

SN74LS670N

  • 描述:种类: 寄存器文件 集成电路: 1 x 1:1 电源电压: 4.75伏~5.25伏 电压供应源: 单电源 供应商设备包装: 16-PDIP 安装类别: 通孔
  • 品牌: 德州仪器 (Texas)
  • 交期:5-7 工作日
渠道:
  • 自营
  • 得捷
  • 贸泽

展开

起订量: 1

数量 单价 合计
1+ 21.00441 21.00441
10+ 18.86051 188.60512
25+ 17.82622 445.65562
100+ 15.44983 1544.98300
250+ 14.65789 3664.47275
500+ 13.15238 6576.19100
1000+ 13.08067 13080.67700
  • 库存: 5974
  • 单价: ¥21.00441
  • 数量:
    - +
  • 总计: ¥21.00
在线询价

温馨提示: 请填写以下信息,以便客户代表及时与您沟通联系。

规格参数

  • 部件状态 可供货
  • 电压供应源 单电源
  • 安装类别 通孔
  • 包装/外壳 16-DIP(0.300英寸,7.62毫米)
  • 供应商设备包装 16-PDIP
  • 制造厂商 德州仪器 (Texas)
  • 集成电路 1 x 1:1
  • 独立电路板 four
  • 种类 寄存器文件
  • 输出高电流, 输出低电流 2.6毫安, 8毫安
  • 电源电压 4.75伏~5.25伏
  • 工作温度 0摄氏度~70摄氏度(TA)

SN74LS670N 产品详情

The SN54LS670 and SN74LS670N MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G\W, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G\R, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement — data-entry addressing separate from data-read addressing and individual sense line — eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 128 of these outputs may be bus connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS670N is characterized for operation from 0°C to 70°C.

Feature

  • Separate Read/Write Addressing Permits Simultaneous Reading and Writing
  • Fast Access Times…Typically 20 ns
  • Organized as 4 Words of 4 Bits
  • Expandable to 512 Words of n-Bits
  • For Use as:
    • Scratch-Pad Memory
    • Buffer Storage between Processors
    • Bit Storage in Fast Multiplication Designs
  • 3-State Outputs
  • SN54LS170 and SN74LS170 Are Similar But Have Open-Collector Outputs
Description

The SN54LS670 and SN74LS670 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G\W, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G\R, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement — data-entry addressing separate from data-read addressing and individual sense line — eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 128 of these outputs may be bus connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS670 is characterized for operation from 0°C to 70°C.

SN74LS670N所属分类:信号开关/多路复用器/解码器,SN74LS670N 由 德州仪器 (Texas) 设计生产,可通过久芯网进行购买。SN74LS670N价格参考¥21.004410,你可以下载 SN74LS670N中文资料、PDF数据手册、Datasheet数据手册功能说明书,可查询SN74LS670N规格参数、现货库存、封装信息等信息!

德州仪器 (Texas)

德州仪器 (Texas)

德州仪器公司(TI)是一家开发模拟IC和嵌入式处理器的全球半导体设计和制造公司。通过雇用世界上最聪明的人,TI创造了塑造技术未来的创新。如今,TI正在帮助超过10万名客户改变未来。

会员中心 微信客服
客服
回到顶部