The CD4514BC and CD4515BC are 4-to-16 line decoders with latched inputs implemented with complementary MOS (CMOS) circuits constructed with N- and P-channel enhancement mode transistors. These circuits are primarily used in decoding applications where low power dissipation and/or high noise immunity is required.
The CD4514BC (output active high option) presents a logical “1” at the selected output, whereas the CD4515BC presents a logical “0” at the selected output. The input latches are R–S type flip-flops, which hold the last input data presented prior to the strobe transition from “1” to “0”. This input data is decoded and the corresponding output is activated. An output inhibit line is also available.
Features
■ Wide supply voltage range: 3.0V to 15V
■ High noise immunity: 0.45 VDD (typ.)
■ Low power TTL: fan out of 2
compatibility: driving 74L
■ Low quiescent power dissipation:
0.025 µW/package @ 5.0 VDC
■ Single supply operation
■ Input impedance = 1012Ω typically
■ Plug-in replacement for MC14514, MC14515
Applications
Two CD4512 8-channel data selectors are used here with the CD4514B 4-bit latch/decoder to effect a complex data routing system. A total of 16 inputs from data registers are selected and transferred via a 3-STATE data bus to a data distributor for rearrangement and entry into 16 output registers. In this way sequential data can be re-routed or intermixed according to patterns determined by data select and distribution inputs.
Data is placed into the routing scheme via the 8 inputs on both CD4512 data selectors. One register is assigned to each input. The signals on A0, A1 and A2 choose 1-of-8 inputs for transfer out to the 3-STATE data bus. A fourth signal, labelled Dis, disables one of the CD4512 selectors, assuring transfer of data from only one register.
In addition to a choice of input registers, 1–16, the rate of transfer of the sequential information can also be varied. That is, if the CD4512 were addressed at a rate that is 8 times faster than the shift frequency of the input registers, the most significant bit (MSB) from each register could be selected for transfer to the data bus. Therefore, all of the most significant bits from all of the registers can be transferred to the data bus before the next most significant bit is presented for transfer by the input registers.
Information from the 3-STATE bus is redistributed by the CD4514B 4-bit latch/decoder. Using the 4-bit address, INA–IND, the information on the inhibit line can be transferred to the addressed output line to the desired output registers, A–P. This distribution of data bits to the output registers can be made in many complex patterns. For example, all of the most significant bits from the input registers can be routed into output register A, all of the next most significant bits into register B, etc. In this way horizontal, vertical, or other methods of data slicing can be implemented.