This single-bit noninverting bus transceiver uses two separate configurable power-supply rails. The SN74AVC1T45DBVRE4 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage, bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
The SN74AVC1T45DBVRE4 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.
The SN74AVC1T45DBVRE4 is designed so that the DIR input is powered by VCCA.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state.
NanoFree? package technology is a major breakthrough in IC packaging concepts, using the die as the package.
Feature
- Available in the Texas Instruments NanoFree Package
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range
- VCC Isolation Feature - If Either VCC Input Is At GND, Both Ports Are In The High-Impedance State
- DIR Input Circuit Referenced to VCCA
- ±12-mA Output Drive at 3.3 V
- I/Os Are 4.6-V Tolerant
- Ioff Supports Partial-Power-Down Mode Operation
- Typical Max Data Rates
- 500 Mbps (1.8-V to 3.3-V Translation)
- 320 Mbps (<1.8-V to 3.3-V Translation)
- 320 Mbps (Translate to 2.5 V or 1.8 V)
- 280 Mbps (Translate to 1.5 V)
- 240 Mbps (Translate to 1.2 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- ±2000-V Human Body Model (A114-A)
- 200-V Machine Model (A115-A)
- ±1000-V Charged-Device Model (C101)
This single-bit noninverting bus transceiver uses two separate configurable power-supply rails. The SN74AVC1T45 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage, bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
The SN74AVC1T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.
The SN74AVC1T45 is designed so that the DIR input is powered by VCCA.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state.
NanoFree? package technology is a major breakthrough in IC packaging concepts, using the die as the package.